NMDA Receptor-Mediated Control of Presynaptic Calcium and Neurotransmitter Release
نویسندگان
چکیده
منابع مشابه
NMDA receptor-mediated control of presynaptic calcium and neurotransmitter release.
Before action potential-evoked Ca2+ transients, basal presynaptic Ca2+ concentration may profoundly affect the amplitude of subsequent neurotransmitter release. Reticulospinal axons of the lamprey spinal cord receive glutamatergic synaptic input. We have investigated the effect of this input on presynaptic Ca2+ concentrations and evoked release of neurotransmitter. Paired recordings were made b...
متن کاملPresynaptic NMDA receptor mechanisms for enhancing spontaneous neurotransmitter release.
NMDA receptors (NMDARs) are required for experience-driven plasticity during formative periods of brain development and are critical for neurotransmission throughout postnatal life. Most NMDAR functions have been ascribed to postsynaptic sites of action, but there is now an appreciation that presynaptic NMDARs (preNMDARs) can modulate neurotransmitter release in many brain regions, including th...
متن کاملReceptor-mediated regulation of calcium channels and neurotransmitter release.
Ca2+ influx into the nerve terminal is normally the trigger for the release of neurotransmitters. Many neurons possess presynaptic receptors whose activation results in changes in the quantity of neurotransmitter released by an action potential. This paper reviews studies that show that presynaptic receptors can regulate the activity of Ca2+ channels in the nerve terminal, resulting in changes ...
متن کاملCalcium control of neurotransmitter release.
Upon entering a presynaptic terminal, an action potential opens Ca(2+) channels, and transiently increases the local Ca(2+) concentration at the presynaptic active zone. Ca(2+) then triggers neurotransmitter release within a few hundred microseconds by activating synaptotagmins Ca(2+). Synaptotagmins bind Ca(2+) via two C2-domains, and transduce the Ca(2+) signal into a nanomechanical activatio...
متن کاملMetabotropic Glutamate Receptor–Mediated Control of Neurotransmitter Release
Presynaptic metabotropic glutamate receptors (mGluRs) modulate the release of transmitter from most central synapses. However, difficulties in recording from presynaptic structures has lead to an incomplete understanding of the mechanisms underlying these fundamental processes. By recording directly from presynaptic reticulospinal axons and postsynaptic motoneurons of the lamprey spinal cord, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Neuroscience
سال: 1999
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.19-01-00193.1999